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Robust Impulse Eliminating Internal Model
Control of Singular Systems: A Robust Control

Approach
M.M. Share Pasand, H.D. Taghirad

Abstract— The problem of model based internal control of singular systems is investigated and the limitations of directly extending
the control schemes for normal systems to singular ones were analyzed in this paper. A robust approach is proposed in order to
establish the control scheme for singular systems, and moreover, to present a framework for robust control of singular systems in
presence of modeling uncertainties. The theory is developed through a number of theorems, and several simulation examples are
included and their physical inter-pretations are given to verify the proof of concept.

Index Terms— singular systems, Impulsive behavior, internal model control, Model based control, robust control, tracking problem,
impulse elimination.
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1.  INTRODUCTION

ingular systems represent a general framework for linear
systems [1]. A singular model is an appropriate model for

describing large scale interconnected systems, constrained ro-
bots and other differential algebraic systems with linear alge-
braic constraints [2]. Also singular models can be utilized to
model a system when the dependent variable is displacement
rather than time [3]. Since the first time they were introduced
[4], several efforts have been made to control singular systems
[5-9]. As the singular systems were firstly introduced in the
state space form representation [4], they were usually studied in
time domain. In [5] the problem of finite mode pole placement
is studied, while simultaneous impulse elimination and robust
stabilization problem is considered in [6], robust Eigen-structure
assignment of finite modes is studied in [7]. In [8] strict impulse
elimination is studied using time derivative feedback of the
states and [9] investigated the output feedback control using a
compensator. In fact most of the existing methods are exten-
sions of the control schemes for standard systems [5],[6],[10]. In
the singular system control context the control objectives are
more complicated due to the existing obstacles such as algebraic
loop phenomenon, impulsive behavior [11] , and regularity of
the closed loop [8,9] . Unlike the time domain methods, there
are very few works on the frequency domain control of singular
systems. In the frequency domain, the tracking problem, robust
control problem and impulse elimination can be treated more
conveniently. Specifically the so called Internal Model Control
(IMC) method provides a very interesting framework for ana-
lyzing the algebraic loop, regularity of the closed loop and im-
pulse elimination problems of singular systems. Furthermore,

most of existing methods in robust control of singular systems
are limited to study a special form of uncertainty. They assumed
matrix E to be exactly known [6, 7 and 10]. This assumption is
more restrictive than it appears, because it limits the system to
be impulsive while some uncertainties may exist which lead to a
strictly proper system for a singular model. Therefore this paper
suggests a new concept for robust control. While previous
works on robust control focuses on robust stability and robust
performance, as it comes to descriptor systems, robust proper-
ness of closed loop should be studied. The internal model
framework for controlling singular systems provides a more
logical uncertainty model and release the restrictive assumptions
made in the existing state space methods for robust control of
singular systems. Also it provides offset free tracking capability
of  the  closed  loop  as  well  as  being  able  to  well  treat  delayed
systems. The main obstacle which arises in the internal model
control of singular systems is that the internal model cannot be
implemeted easily, because it is generally improper. Even in
computer aided control systems it is not easy to simulate a sin-
gular system, since the discrete model needs future input data to
determine the system state vector at the present time [1]. This
problem results in an inevitable mismatch between the plant and
the parallel model used in IMC.

Notice that, defining the disk shaped multiplicative uncer-
tainty leads to an unbounded uncertainty profile which is not
suitable in robust design of singular systems. This paper pro-
vides solution to the latter problem by introducing the singular
internal model filter in series with the conventional internal
model filter. The aforementioned filter eases the design proce-
dure, bounds the uncertainty profile. Also it makes the closed
loop strictly proper and eliminates impulsive modes by smooth-
ing the control action as much as needed. Another role of the
introduced filter is to make it possible to design robust control-
ler in the conventional context.  The paper is organized as fol-
lows. In the next section backgrounds are discussed and the
obstacles in control of singular systems are presented, and some
major limitations of the direct extension of IMC are explained.
In the third section the proposed method is studied and the filter
design procedure is illustrated. In the fourth section several ex-
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amples and simulations are given to examine the algorithm both
in terms of robustness properties and closed loop performance.
Finally, the concluding remarks are given in last section.

CONTROL OBJECTIVES IN SINGUALR CONTROL
SYSTEMS

Definitions and Singular Systems Characteristics
As Descriptor models are a straight extension of standard

state space models [1], control problem for these systems has a
wider range of objectives. A control system for a standard plant
is designed such that the closed loop is stable and has a prede-
fined performance and acceptable robustness properties. A sin-
gular control system, on the other hand, should be designed
such that it is impulse free, regular and doesn’t include any al-
gebraic loops in addition to the aforementioned properties.
These control objectives combined with the standard objectives
make the control of singular systems more challenging. Robust
control of singular systems is the most challenging issue be-
cause it requires robustness not only in the stability and perfor-
mance but also in regularity and properness.   State space robust
control schemes require robust observers in order to work prop-
erly and do not guarantee strict properness of the closed loop
also they usually result in more complicated derivation algo-
rithms. The main advantage to use internal model control
scheme in here, is that the IMC provides an effective tool in
frequency domain without introducing complicated methods in
evaluation of closed loop performance and stability. Therefore,
IMC can be regarded as a proper alternative for existing state
space methods. Also IMC provides a simple framework for al-
gebraic loop and properness analysis of singular control systems
which is much simpler than that in state space methods or other
frequency domain schemes. Consider the following state space
description:

Cxy
BuAxxE

                                                                  (1)

Definition1: System (1) is impulse free if and only if:

ErankAsEdeg                    (2)

The nullity index of E is called singularity index of a singular
system (1) in this paper.

Remark1:  Note that the following general inequality always
holds:

)(deg ErankAsE           (3)

Corollary1: A singular system is called impulse free, if and only
if, it doesn’t exhibit impulses in its impulse response.

Definition2: A singular system is called minimal if it is observa-
ble and controllable. The minimality of the plant is presumed
throughout this paper.

Definition3: A transfer function is strictly proper, bi-proper and
improper if the following limit is zero, a finite nonzero value

and infinite respectively. Strictly proper and bi-proper systems
may be generally named as proper.

)(lim s
s

Lemma1:  A  state  space  realization  of  a  singular  system  is  im-
pulse free if and only if its transfer function has a nonnegative
relative degree i.e. it is proper.

Proof: The transfer function matrix from input to state for sys-
tem (1) can be computed as:

AsE
BAsEadjCBAsECs )()()( 1

It is known that degree of the nominator is equal to rank of E at
most, therefore if condition (2) is satisfied then the system trans-
fer matrix will be proper and if not, the transfer matrix may be
improper. On the other hand if transfer matrix is not proper con-
dition (2) is not satisfied.             

Remark2: The observability assumption is essential for the
above lemma .It can be shown that it may be a number of on-
observable impulsive modes which do not appear in the output.
Also note that condition (2) is a general condition for impulse
free systems but in order to equate it with corollary 1, the obser-
vability assumption is needed.

Lemma2: In the unity output feedback structure the closed loop
system is strictly proper if the compensator/plant combination is
strictly proper.

Proof: Expand the nominator and denominator by their respec-
tive Taylor series.

1

1

1
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j
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Because CP is supposed to be strictly proper, the largest term in
its expansion has a negative power therefore the denominator
has a greater degree than the nominator and thus the closed loop
system is strictly proper.                                                    

Figure1: Feedback structure

Remark3: Note that Lemma2 provides a sufficient condition.
The necessary and sufficient condition is derived later. Lemma2
shows that why the objective of properness has not been consi-
dered before the introduction of descriptor systems. Assuming
strictly proper functions for plant and compensator, it is trivial
that the closed loop system is strictly proper. Also for a strictly
proper plant and a bi-proper compensator the closed loop will be
bi-proper.
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Lemma3: For a bi-proper plant and a bi-proper compensator, the
closed loop will be improper if and only if:

1lim CP
s

Lemma4:  In  order  to  have a  strictly  proper  closed loop system
with a unit feedback, if the plant is improper the compensator
should be strictly proper with a sufficiently large relative de-
gree.

Proof: For the closed loop to be strictly proper, the compensa-
tor/plant should be strictly proper according to lemma2, there-
fore the compensator should be strictly proper.  

Robust Internal Model Control of Singular Systems
In  IMC structure  the  parallel  model  or  internal  model  is

inevitably proper or strictly proper. Therefore there always
exists a mismatch between the plant and model. For a conti-
nuous output especially in case of initial jumps of the input,
it is required that the plant and the internal model have the
same infinite gain and the compensator is strictly proper.
This issue can be treated by a smoothing pre-filter for refer-
ence signal but the method is not robust against model un-
certainties. The IMC filter is conventionally used to enhance
robustness properties by victimizing closed loop response
and making the compensator implementable (proper).
Moreover, it accounts for online adaptation of the control
system by adjusting the filter time constant. In this paper we
extend  this  approach  by  using  a  second  IMC  filter  which
assures the closed loop to be strictly proper and has a
smooth response by compensating the singular plant impul-
sive behavior. The singular internal model control filter or
SIMC  filter  is  designed  to  yield  a  continuous  smooth  re-
sponse and a robust IMC design for singular systems. In fact
by using a parallel strictly proper model in IMC, the uncer-
tainty will become unbounded and the robust control will
not be feasible any more. Therefore the SIMC filter has
another role of bounding the uncertainty profile and making
the robust control problem feasible. The disk-type uncertain-
ty profile is usually assumed in robust control schemes, is
described by the following relation.

)()(
)(~

)(~)(
mm ll

jp
jpjp           (4)

This uncertainty description allows us to incorporate several
singular systems in the design while the state space uncer-
tainty descriptions are limited to represent only singular
systems with a pre-specified singularity index.  If one aug-
ments  the  improper  plant  by  high  frequency  stable  poles  a
strictly proper model can be obtained, which has a very
close  behavior  to  plant  at  least  at  low  enough  frequency
range. Larger poles results in closer response to that of the
plant in wider bandwidths. However, in this way the uncer-
tainty  becomes  unbounded.  In  particular  assume  a  poly-
nomial of stable real poles with a unit steady state gain
namely D, then one can write:

)(
)()(~

sD
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The above description for model is the most natural selec-
tion for a strictly proper model, whose behavior is as close
as possible to that of the plant. However, in this situation the
mismatch between plant and model is not included in a disk
shaped region. In other words the uncertainty bound will be
infinity. Now we can take different approaches: Choose
another internal model which yields bounded uncertainty;
developing new theory for this kind of uncertainty; or modi-
fy the plant input in order to bind the uncertainty as well as
removing impulses from the response. The following lem-
mas are introductory materials for the theorems developed
later in this paper.

Lemma5:  A control system is robustly stale, if and only if,
the complementary sensitivity function fulfills the following
inequality: [12]

1)(sup mls                                                                   (6)

Remark4: For IMC structure the complementary sensitivity
function and the uncertainty can be computed as follows:

)/11(1)~(1
)(

Dqp
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ppq
qps                                    (7)

1)(ˆ Dslm                                                                     (8)

Therefore, in this case condition (6) cannot be satisfied.
Thus we need to modify the IMC structure or algorithm in
order to gain a more tractable uncertainty profile. In the fol-
lowing section the SIMC filter is introduced and the pro-
posed method is studied.

THE SIMC FILTER

The idea of augmenting the IMC compensator by an IMC
filter can be extended to singular systems in a different
manner.  According  to  the  previous  discussions  one  way  to
overcome the obstacles in IMC of singular systems is to
augment the compensator by an additional IMC filter, we
call it SIMC. This filter have the same structure as the con-
ventional IMC filter for step reference signals, and therefore,
the IMC problem of singular systems consists of finding two
time constants; One for the conventional IMC which adjusts
the closed loop performance, robustness and noise amplifi-
cation; and one for the feasibility of robust control and im-
pulse elimination of the singular plant. This is expectable for
a singular system to require more parameters to be con-
trolled, because a singular system is a general form of linear
systems and cannot be treated by the same existing methods
in standard systems. One advantage of SIMC is to solve the
problem by introducing an additional filter without any
need of complicated design procedures. Define the SIMC
filter as a low pass filter:
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Lemma6: Define SIMC filter as stated in (9), therefore the
closed loop system is strictly proper, if and only if:

m         (10)

In which, parameter denotes the relative degree of the
plant.

Proof: Using (9-10) as the SIMC filter, the relative degree
of plant/compensator becomes strictly proper. Therefore, by
means of lemma2, the closed loop system is strictly proper.

Remark5: There is no need to introduce pole zero cancel-
lation issues because SIMC filter cancels minimum phase
zeros of the plant at most.

Lemma7: Together with SIMC filter the singular plant is
capable of being robustly controlled, if (6) can be satisfied.

Proof: The new uncertainty profile have the following
shape:

1)(ˆ
2

2
Df

D
p

D
ppf

slm
        (11)

Now it is easy to choose SIMC filter such that the uncer-
tainty profile is bounded.

Remark 6: Note that the real uncertainty profile between
actual plant and assumed singular model is unchanged.
SIMC manipulates only the mismatch between singular
model and the implemented parallel strictly proper model of
IMC. Also note that ml̂ represents the uncertainty caused by

singular system while ml is the actual uncertainty.

Lemma8: The closed loop system with SIMC structure
characterized  by  equations  (9-11)  is  robustly  stable,  if  and
only if:

mlqp
f

ˆ~~
1

1
        (12)

Proof:  The  complementary  sensitivity  function  can  be
stated as:

121
2

~~~~~
)(1

)( fpqDfpfqDpqqp
ppqf
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Therefore condition (6) can be states as (12).

Remark7: The above lemma states an essential character
of SIMC, the SIMC filter caused the uncertainty to remain in
a disk shaped region and the robust stability criterion is then
applicable to the problem. If  one studies condition (6)  with
and without SIMC filter,  it  can be seen that SIMC filter im-
poses  a  bound  on  the  uncertainty.  Also  choosing  D  as  the
inverse of SIMC filter, the uncertainty profile remains un-
changed and the uncertainty caused by singular system will
be zero as can be seen from (11).

When there are some model inaccuracies or disturbances,
condition (12) cannot be met easily because a specific per-
formance index is expected in the control objectives. In these
situations a natural compromise exists and the victimization
of performance is inevitable. Note that one can set the IMC
filter to zero in order to satisfy (12) but this means open loop
control of the system and therefore losing performance. The
uncertainty bound generally increases with frequency. A
natural routine for making the controller robust is to design
a nominal H2-optimal controller according to performance
specifications and then increasing the filter time constant to
meet the desired robustness properties.
 Theorem1: Assuming 1

2fD then  there  is  an  IMC  filter
such that the closed loop system is robustly stable, and fur-
thermore, the system exhibits robust performance at the zero
frequency, if and only if:

1)0(ml         (13)

Proof: The IMC filter should satisfy (12) for robust stability,
because of the structure selected for IMC filter, the maxi-
mum  value  for  the  filter  is  unity  and  it  occurs  at  zero  fre-
quency. Therefore, for the nominal plant (12) can be satisfied
only  if  the  uncertainty  upper  bound  is  smaller  than  unity,
and therefore, the necessary condition for the IMC filter to
exist is (13). The sufficiency is obvious. 

Remark8: Note that theorem 1 is an extension of the existing
result in standard systems. Although the SIMC filter does
not appear explicitly in the theorem, it has an essential role
in the derivation of the theorem as well as lemmas. In other
words, introducing the SIMC makes it possible to apply the
existing frame for robust control to the singular systems.

Remark9: Theorem1 just considers the solvability of (12). In
other words it studies the existence of an appropriate IMC
filter  which  solves  the  robust  control  problem.  In  order  to
find  such  an  IMC  filter  one  should  increase  the  time  con-
stant and check the robust stability criterion until it is satis-
fied.

Remark10: It should be noticed that there exists no con-
straint on the SIMC filter time constant and any positive
time constant can be chosen. However when smoothness of
the  response  is  also  a  requirement,  large  time  constant  for
SIMC filter is required, and when a fast response is desired,
it is better to choose the time constant as small as possible.
Note that if the SIMC filter time constant is larger than that
of  IMC  filter  and  the  plant  dominant  time  constant,  it  will
determine the closed loop time constant. In fact the closed
loop time constant is the largest time constant among the
plant,  IMC filter and SIMC filter time constants.  Because of
robustness considerations SIMC filter time constant may be
smaller than IMC filter time constant, and does not restrict
the  closed  loop  performance.  It  is  not  possible  to  decrease
SIMC  filter  time  constant  as  much  as  desired,  since  input
noises may be amplified.
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Remark11:  Note  that  (13)  means  that  steady  state  gains  for
the plant and model should be of the same sign. A little
mismatch between plant and model steady state gain may
cause instability if their sign were different. This a common
drawback of robust control systems for plants with zeros
near  the  origin.  By  a  slight  change  of  the  zero  location  the
closed loop may become unstable if the zero is near the ori-
gin.

Lemma9: Irregularity of closed loop occurs, if and only if:

sallforcp 1

Proof: From the definition of regularity, a singular system is
irregular if and only if:

0AsE                                                                     (14)

In the frequency domain context of output feedback control
systems the above determinant is the characteristic poly-
nomial of system or the denominator of complementary sen-
sitivity function. Write the closed loop transfer function as:

MN
N

M
N

M
N

cp
cps

11
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According to (14) and (15) the closed loop system is irregu-
lar, if and only if:

MN

This can be rewritten as:

sallforcp 1         (15)

The last equality also means an unsolvable algebraic loop in
the simulation.             

Corollary2: For a strictly proper plant/compensator, (15)
does not occur because:

....)( 2
2

1
1 sasascp                                           (16)

As a result for a strictly proper compensator/plant combina-
tion the regularity issue is not of concern. This corollary de-
picts the fact that why the regularity control objective is in-
troduced only for singular systems and not for standard
strictly proper ones.

In the following theorem we may introduce the interesting
characteristics of the proposed algorithm.

Theorem2: The closed loop system with an appropriate IMC
filter designed according to (12) is robustly strictly proper
and robustly regular against all uncertainties described by
(4).

Proof: Note that from theorem1, the closed loop robust sta-
bility and zero frequency performance are assured. The fam-
ily of plants described by (4) all have a singularity index
smaller  than  or  equal  to  that  of  nominal  plant.  This  can  be

shown as follows; assume that there is a plant in the family
(4)  that  has  a  larger  singularity  index  than  the  nominal
plant. Then uncertainty profile can be written as:

p
pplm ~
~

From the above assumption uncertainty will increase by
frequency because it has an improper transfer function.
Therefore, (4) cannot be satisfied as the uncertainty is un-
bounded.   Moreover,  for  any  plant  being  in  family  (4)  the
relative degree of SIMC filter is greater than or equal to the
plant singularity index and thus the closed loop system is
robustly strictly proper according to lemma2. Also note that

regularity of the plant is guaranteed by lemma8 because of
strict properness of plant/compensator combination.

The following design procedure can be followed for robust
internal model control of a singular plant.

   Design Procedure:

1.  Choose  the  polynomial  D  and  set 2f as  its  inverse.  The
polynomial time constant should be smaller than the domi-
nant time constant of plant. According to nominal singular
plant choose m such that the strictly properness of closed
loop is guaranteed.

2.  For the nominal plant check the feasibility of robust con-
trolhaving uncertainty profile as (4) according to (12), if sa-
tisfies design IMC filter for a good performane in nominal
case.

3.  Redesign SIMC filter for having better performance if  re-
quired.

SIMULATION RESULTS

  Simulating an improper system is not possible with the
existing numerical methods, since simulation needs future
data for computing the present state vector. This is why
many Papers in the field of singular systems do not include
any simulation examples or just simulate causal singular
systems. However, if the closed loop system is proper, any
simulating software can easily implement the closed loop
system regardless of the inner unsolvable loops, which form
singular systems in the inner parts of the closed loop system.
In this paper, some illustrative simple examples are chosen
in  order  to  show  the  effectiveness  of  the  proposed  algo-
rithm.
Example1:  Consider  the  nonlinear  system  described  by  the
following equations:

0
26

2

2
1211

ux
xuxxx

21 2xxy                                                                      (17)
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The output equation is the simplest form of output equation.
Nonlinear output may occur in a singular system; however
they are essentially treated in a similar manner. The alge-
braic part of a singular system denotes its limitations for
having arbitrary initial conditions. The system described by
(17)  can  be  modeled  by  a  standard  state  space  system,  too.
For a nominal input of u=9, the equilibrium point will be:

9,30 *
2

*
121 xxxx                                           (18)

In case of nonlinear term in (17), the nonlinearity can be con-
sidered as an uncertainty, and not included in the linear
model representation. The process model may be considered
as a bi-proper transfer function.
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The compensator, IMC and SIMC filters may be chosen as:
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Closed loop system responses to different inputs with dif-
ferent initial conditions are shown in figures 1 to 3. Before
change in the set point, initial condition is vanished and
then the set point signal is tracked without any off set. The
closed loop system is stable as the phase portrait shows and
as it is strictly proper, a smooth response is attained. Closed
loop system is able to follow any piecewise constant refer-
ence signal and reject constant disturbances. The main ad-
vantage of the presented control structure is to make closed
loop, impulse free, even strictly proper, in a robust manner,
i.e. regardless of uncertainty in the plant model.
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Figure 1: System response to initial condition

The fading character of the output is due to guaranteed sta-
bility of the closed loop system. Figure2 shows the system
response to a reference input of magnitude 9, combined with
a disturbance. It shows the system capability to reject dis-
turbances.
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Figure 2: Set point and disturbance response
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Figure 3: Set point response with initial condition
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Figure 4: phase portrait of closed loop near the origin

This example shows that the closed loop system is strictly
proper regardless of any model uncertainties while bounded and
also it provides an example of robust stability and zero frequen-
cy performance design.

Example2: Consider a group of linear singular systems as
described by the following set of transfer function.

1)(
14)(

13)(
1)(

2
3

2
2

2
1

2

ssp
sssp

sssp
sssp

The nominal plant (model) is assumed to be:

12)(~ 2 sssp

The parallel model and compensator are:
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It is aimed to design a single robust controller for all plants
described above. The uncertainty norm is bounded for all of
the models described in (19), however, its infinity norm is
near the unity for case p4. Following figures depict closed
loop behavior in tracking step set point. Set point tracking is
almost perfect even in presence of uncertainties. This charac-
teristic also exists in conventional unit feedback control, e.g.
PID controllers. However state space methods like [5] don’t
include  this  feature.  In  contrast  to  the  aggressive  nature  of
singular systems, closed loop response is smooth enough to
ensure preventing any damage to the instruments. In the last
case the oscillating behavior of plant is not included in the
model and therefore closed loop response is not satisfactory.
Note that while steady state gains of plant and model have
the same sign, the closed loop is robustly stable. And while
the uncertainty is bounded it is robustly strictly proper.
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Figure 5: step response for p1
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Figure 6: Step response for p2
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Figure 7: Step response for p3

CONCLUSION

In this paper a new, effective and simple control scheme is
proposed for robust internal model control of singular linear
systems. The method has many advantages over the exist-
ing, state space methods including robust strict properness
of the closed loop, avoiding algebraic loops, robust tracking
of specific signals and the ability to robustly stabilize a larg-
er group of singular systems comparing with other methods.
Two  simulation  examples  are  included  to  depict  the  algo-
rithm performance.
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